Symposium Finds That Milk is Good For Mammals

US - Animal and dairy scientists have discovered that drinking milk at an early age can help mammals throughout their lives, according to the American Society of Animal Science.
calendar icon 9 April 2013
clock icon 2 minute read

But understanding exactly how milk affects the body is a complicated story of hormones, antibodies and proteins, as well as other cells and compounds researchers have not yet identified.

Learning how milk affects offspring was the subject of the Lactation Biology Symposium, held as part of the 2012 Joint Annual Meeting in Phoenix, AZ. The presentations were summarized in a recent paper in the Journal of Animal Science.

The presentations focused on epigenetics, or how gene expression changes based on factors like environment or diet. Epigenetic changes modify when or how certain traits are expressed.

The research presented at the Lactation Biology Symposium could have implications for human health as well. Dr. Katie Hinde, from Harvard University, revealed how the components of mother’s milk could alter infant behavior and cell development through epigenetic mechanisms. In Hinde’s studies of rhesus monkeys, infants who had mothers producing milk higher in milk energy and cortisol were more active, playful, exploratory and bold.

“Milk is, therefore, not merely food that allows the body to grow but it contains constituents that help build the brain and provide the energy that allows infants to be behaviorally active,” wrote K. M. Daniels et. al. in a review of the Lactation Biology Symposium.

Research into milk could help researchers better understand farm animals, the dairy industry and human health. Figuring out which compounds are found in milk and how they affect gene expression in offspring could advance knowledge in body development at all stages of life.

“At present there are far more questions than answers,” said Dr Bartol. “However, we are making progress.”

TheCattleSite News Desk

© 2000 - 2024 - Global Ag Media. All Rights Reserved | No part of this site may be reproduced without permission.